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Abstract

An extension of the corresponding states approach of Pitzer and of Lee and Kesler (Pitzer-

Lee-Kesler (PLK) strategy) based on the work of Teja et al. (PLKT strategy) provides a clear

pedagogical setting for describing the underlying basis of the PLK strategy itself and also its

extension to families of non-normal fluids. Application of the strategy to two families of non-

normal fluids is illustrated. Furthermore, the PLKT implementation using meta-computing

software provides a convenient tool to perform quantitatively accurate calculations while

simultaneously emphasizing the thermodynamic problem structure. Procedures and an ex-

ample are given for illustration.
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One way of utilizing an equation of state (EOS) for pure fluids is to determine the EOS

parameters by fitting them to experimental data for each individual fluid. Instead of a

particular parameter set for each fluid, in a variant of this approach, an EOS is extended

to broad classes of fluids by expressing at least one of the parameters in terms of critical

properties, Pc and Tc, and at least one additional parameter such as the acentric factor,

ω. The resulting generalized form of EOS, while less accurate for each individual fluid,

is intended to provide a compact and reasonably accurate representation of the volumetric

(and thermodynamic) properties of the entire class of fluids. An important aspect of chemical

engineering education is the study of this strategy of EOS construction and generalization,

and its extension to fluid mixtures. A recent example of this strategy for pure polar and

nonpolar fluids and their mixtures is described by Platzer and Maurer(1,2).

A different and less common way of utilizing an EOS for classes of fluids is to follow

an approach originally proposed by Pitzer. This utilizes parameter sets corresponding to

accurate representations of the behavior of selected reference fluids, and then approximates

the properties of a class of fluids by incorporating an additional parameter such as ω in

the form of corrections to the principle of corresponding states, in terms of an expression

for z(Pr, Tr) (where Tr = T/Tc is the reduced temperature and Pr = P/Pc is the reduced

pressure). In this note, we explore the general basis for and the utility of this latter approach,

which we believe has been insufficiently exploited in the pedagogical literature.

The correlation of Lee and Kesler(3) for volumetric and thermodynamic properties of

normal fluids, based on the acentric factor (ω) of Pitzer et al.(4–7) (PLK strategy), is the most

favored three-parameter corresponding states correlation (Smith et al.(8), p. 88). In spite of

this accolade, introductory books on thermodynamics almost all either ignore it, or deal only
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with its implementation in graphical or tabular form. Such pedagogical treatments of the

correlation for the most part ignore the underlying basis, thus obscuring its possible extension

to other classes of fluids, and by default its dependence on a particular representation of

PvT behavior. Such treatments also disregard the emphasis placed by Lee and Kesler on

an analytical implementation in a form convenient for computer use. The graphical form

is useful for a qualitative representation of the behavior of pure fluids, but both tables and

charts are inadequate for the best quantitative results. The extension of the PLK strategy

by Teja et al.(9–13) (PLKT strategy), applicable to broader families of fluids, is not discussed

at all in introductory texts.

The somewhat complex computer implementation necessary at the time of its original

development has probably led to the emphasis on the use of graphs and tables in the teaching

of the PLK approach. However, current computer implementation technology has advanced

considerably beyond that available twenty-five years ago. Implementations are now available

in the form referred to by Edgar(14) as “meta-computing” software, involving the use of

packages such as Maple(15), Mathematica(16), Mathcad(17), and MATLAB(18). We agree

with Sandler(19,20) that this type of software is especially useful in a pedagogical setting,

since in addition to allowing the treatment of problems previously considered too complex

at the undergraduate level, it “can let the student concentrate on the subject matter at hand,

..., rather than being distracted by computational methods, algorithms, and programming

languages”(20). This type of software is becoming increasingly accessible to engineering

undergraduates, and lends itself to an efficient implementation of the PLK and the PLKT

approaches.

Our purpose in this note is two-fold:
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1. to describe and emphasize the pedagogical importance of the PLKT strategy, both as a

setting for understanding the essential basis of the PLK strategy for normal fluids, and for

extending it to other classes of fluids; and

2. to describe an efficient analytical implementation of the PLKT strategy using meta-

computing software

We first describe the Pitzer-Lee-Kesler-Teja (PLKT) strategy, and give an example of its

application to two families of non-normal fluids. This description points up the generic nature

of the original PLK strategy so as to remove any dependence on a particular equation of state

and choice of reference fluids. We then describe, with an example, its implementation using

meta-computing software. Throughout, we focus on representation of the compressibility

factor, z = PV/nRT , for pure fluids, but the determination of thermodynamic properties

follows from this, as outlined, for example, by Lee and Kesler.(3)

THE PLKT STRATEGY

In 1955, Pitzer et al.(4,5) added a third parameter, ω, to the two-parameter (Pc, Tc)

principle of corresponding states for determining the thermodynamic properties of “normal

fluids”. This was based on the concepts of (1) “simple” fluids with spherically symmetric

intermolecular potentials/shapes, and (2) “normal” fluids with moderate departures from

simple-fluid behavior, and expressed as a linear relation for z in terms of ω:

z(Pr, Tr;ω) = z(0)(Pr, Tr) + ωz(1)(Pr, Tr) (1)

where Pr(= P/Pc) and Tr(= T/Tc) are the reduced pressure and temperature, respectively,

and ω is defined by
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ω = − log10 p∗r(Tr = 0.7)− 1.000 (2)

where p∗r is the reduced vapor pressure (= p∗/Pc) of the substance at Tr = 0.7. Since the

analytical representation of z(0)(Pr, Tr) and z(1)(Pr, Tr) is not feasible, Pitzer et al. provided

tables of their values based on analysis of experimental data. Curl and Pitzer(21) provided a

criterion for normal fluids based on surface tension.

In 1975, Lee and Kesler(3), seeking to improve the Pitzer results for fluids involved in

hydrocarbon processing, developed an analytical implementation for z(v, Tr) using a modified

Benedict-Webb-Rubin (BWR) equation of state (EOS)(22) to represent the behavior of two

reference fluids which served to determine z(0) and z(1) in equation (1). Lee and Kesler(3)

described a procedure to implement this strategy to obtain z for a hydrocarbon fluid of

interest at a given (P, T ), and they provided tables and charts of values of z(0) and z(1) as

functions of (Pr, Tr,). We call this the Pitzer-Lee-Kesler (PLK) strategy.

In the 1980s, Teja and co-workers(9–13) generalized the PLK approach in three ways.

First, they considered it as a special case of interpolation/extrapolation involving z(Pr, Tr)

using two arbitrary, but conveniently chosen, reference fluids, and thus extended its use to

“families” of fluids other than normal fluids. Second, they allowed the reference fluids to be

represented by any convenient EOS. Third, they extended their approach to mixtures and to

other properties, including viscosity(23–26), surface tension(27), and thermal conductivity(28).

We call this the Pitzer-Lee-Kesler-Teja (PLKT) strategy. No extensive published calculations

show the utility of this approach for pure non-normal fluids, perhaps because the primary

focus of their work was on mixtures(29).

The basis of the PLKT strategy is to recognize that the essential assumption underlying

the Pitzer approach is that z(Pr, Tr) is represented as a linear function of the acentric factor

4



www.manaraa.com

(equation (1)). To determine this linear relationship with ω, we may select, from a family

of fluids, two appropriate reference fluids, r1 and r2 (according to some specified criterion),

with corresponding acentric factors ω(r1) and ω(r2). The equation for the linear z(ω) relation

for any member of the family may be determined from the two points (ω(r1), z(r1)) and

(ω(r2), z(r2)) as:

z(Pr, Tr, ω) = z(r1)(Pr, Tr) +
z(r2)(Pr, Tr)− z(r1)(Pr, Tr)

ω(r2) − ω(r1)
(ω − ω(r1)) (3)

Lee and Kesler used equation (3) for the family of normal fluids, with the reference fluids

r1 and r2 chosen as a simple fluid (ω(r1) = 0) and (essentially) n-octane (ω(r2) = 0.3978),

respectively. However, equation (3) allows the use of any two reference fluids within a family.

The original PLK strategy was developed for normal fluids; the following example illustrates

the appropriateness of equation (3) for two families of non-normal fluids.

Example 1: Consider (a) the family of halogenated hydrocarbon refrigerants, and (b) the

family of normal alkanols. Investigate whether the PLKT strategy of equation (3) can be

applied to these fluid families.

Solution:

(a) Figure 1 (similar to Figure 2 of Pitzer et al.(5)) shows values of z(Pr, Tr) for nine halo-

genated hydrocarbon refrigerants (ranging from C1 to C4) as a function of ω at 4 values

of (Pr, Tr), together with the corresponding results for normal fluids. The z points for the

refrigerants were calculated using the NIST REFPROP software package(32); the full lines

are least-squares fits through these points and are for comparison only. The dotted lines

for normal fluids were calculated using a quantitative numerical implementation of the PLK

strategy, as described in the next section. Figure 1 indicates that the linear relationship of

equation (3) holds for the family of refrigerants, and that it is somewhat different from that
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for normal fluids (the agreement of the results at Tr = 1.30 is coincidental).

(b) Figure 1 also shows values of z(Pr, Tr) for the normal alkanols from methanol (CH4O)

to n-eicosanol (C20H42O). Experimental data
(33) were used for zc (at Pr = Tr = 1), and

at the other state points z was calculated for the first five n-alkanols using the Patel-Teja

EOS;(35,36) the full line at Pr = Tr = 1 is a least-squares fit through the points and is shown

for comparison only. Away from Tr = 1, there is perhaps an insufficient number of family

members to draw a conclusion (and the first member, methanol, is anomalous according to

the particular EOS used). However, the data at Tr = 1 indicate that the linear relationship

of equation (3) likely holds for the family of n-alkanols, and that it is also somewhat different

from that for normal fluids.

Finally, we remark that another way to extend the PLKT approach to non-normal fluids

is to incorporate parameters in addition to ω. For example, if parameters (ω, ξ) are used,

z(Pr, Tr) may be fitted to the plane through 3 points corresponding to 3 reference systems,

{(z(r1), ω(r1), ξ(r1)), (z(r2), ω(r2), ξ(r2)), (z(r3), ω(r3), ξ(r3))}, and the analogue of equation (3) is

z = z1 + a(ω − ω(r1)) + b(ξ − ξ(r1)) (4)

where a and b are determined from the 3 reference systems. Essentially this approach has

been considered by Wu and Stiel(30), by Platzer and Maurer(1), and by Rowley and co-

workers(31), who selected as reference systems two specific nonpolar fluids and either water

or methanol as the third reference system. Platzer and Maurer(1) compared their implemen-

tation of this approach with the alternative approach of expressing the EOS parameters in

terms of ω and ξ. This extension of the PLKT approach is beyond the scope of this note.
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IMPLEMENTATION OF PLKT STRATEGY USING META-

COMPUTING SOFTWARE

In the typical case when the reference fluid EOS is expressed in terms of v and T , imple-

mentation of the PLKT strategy for calculating z or P given (v, T ) is an explicit calculation.

In contrast, calculating z or v given (P, T ) involves an implicit calculation entailing the so-

lution of certain nonlinear equations. The underlying structure of this calculation is made

transparent by the use of meta-computing software. We describe the approach in both cases,

and provide an example calculation for the latter situation.

When the EOS for the reference fluids is given explicitly in terms of v and T , we write

z = f(v, T ;p) (5)

where p denotes a set of parameters that take on particular values for individual fluids.

The particular EOS that Lee and Kesler used in the implementation of their approach(3) is

written in the form

z = f(v′
r, Tr,p) (6)

where v′
r is the ideal-gas reduced volume defined by

v′
r =

Pcv

RTc
≡ zcv (7)

and v is the actual reduced volume, v/vc. Now,

z =
Pv

RT
=

Pr

Tr

Pcv

RTc
≡ Pr

Tr
v′

r ≡
Pr

Tr
zcvr (8)

Equation (8) shows that, in the use of an EOS to calculate z at a given (Pr, Tr), the set of

reduced variables {Pr, Tr, v
′
r} is more appropriate than the set {Pr, Tr, vr}, since the former
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requires neither an assumption about the constancy of zc, nor a knowledge of vc. Since the

usual form of an arbitrarily chosen EOS, equation (5), involves v, v must first be converted

to v′
r to use the PLKT strategy in conjunction with it. This is a subtle point that is not

apparent in the pedagogical literature, and affects the calculation of z both from a given

(v, T ) and from a given (P, T ).

Calculation of z(v, T ) via equation (5)

To calculate z(v, T ) for a substance with critical constants (Pc, Tc) and acentric factor

ω, the following (explicit) equations are used when the EOS is expressed in terms of (v, T )

(i.e., via equation (5)):

z(r1) = f

(
RT (r1)

c

P
(r1)
c

v′
r, TrT

(r1)
c ;p(r1)

)
(9)

z(r2) = f

(
RT (r2)

c

P
(r2)
c

v′
r, TrT

(r2)
c ;p(r2)

)
(10)

where v′
r and Tr are calculated using the properties of the fluid of interest. The value of z is

then obtained from equation (3).

Calculation of z(P, T ) via equation (5)

To calculate z(P, T ) when the EOS is expressed in terms of (v, T ), equation (5), an

implicit calculation must be performed involving the solution of nonlinear equations for the

reference fluids as follows:

1. calculate Tr and Pr using the properties of the fluid of interest

2. calculate z(r1) as the solution of of the nonlinear equation:

z = f

(
R

T (r1)
c

P
(r1)
c

Tr

Pr
z, T ;p(r1)

)
(11a)
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4. calculate z(r2) as the solution of the nonlinear equation:

z = f

(
R

T (r2)
c

P
(r2)
c

Tr

Pr
z, T ;p(r2)

)
(11b)

5. calculate z from equation (1)

Calculation of z(v, T ) and z(P, T ) via equation (6)

When the EOS is expressed in terms of (v′
r, Tr) (as is the case for the Lee-Kesler EOS

(3)),

equations (9,10), and (11a, 11b) are, respectively:

z(r1) = f
(
v′

r, Tr;p
(r1)

)
(12)

z(r2) = f
(
v′

r, Tr;p
(r2)

)
(13)

for z(v, T ), and

z = f
(

zTr

Pr
, Tr;p

(r1)
)

(14)

z = f
(

zTr

Pr
, Tr;p

(r2)
)

(15)

for z(P, T ).

The calculation procedure is illustrated in Figure 2, which shows a Maple(15) script for

calculating z(P, T ) using the PLKT strategy in conjunction with an EOS expressed in terms

of (v, T ). To make the approach itself transparent, a simple technique is incorporated in

the script to calculate only the largest value of z; this suffices for the supercritical case, but

for the subcritical case only the “vapor-like” root is found. It is left as a student exercise

to modify the script to calculate the appropriate result in any given circumstances, which

requires either a (somewhat complicated) calculation of the vapor pressure using equation

(3), or use of the vapor pressure correlation of Lee and Kesler(3).
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Corresponding scripts for Mathematica(16), Mathcad(17), and MATLAB(18) may be ob-

tained from the web site at http://www.chemical-stoichiometry.net/PLKT/. Scripts for the

calculation of z given an EOS expressed in terms of (v′
r, Tr) are also available at this location.

Use of the Maple(15) script is illustrated by the following example:

Example 2: n-propanol (C3H8O) is to be stored in a 200-liter cylinder at 230◦C. What is

the maximum amount (kg) that can occupy the cylinder as vapor? For n-propanol, Pc =

5170 kPa, Tc = 536.71 K, ω = 0.628, M = 60.10, and p∗(230◦C) = 2996 kPa. (Data are

from Yaws(33), except for the vapor pressure, which is from the DIPPR Student Chemical

Database web site(34).) Use the PLKT strategy with ethanol (ω(r1) = 0.637) and n-pentanol

(ω(r2) =0.594) as reference fluids r1 and r2, respectively, and the Patel-Teja EOS(35,36) in

conjunction with equation (3). Values of the parameters p(r1) and p(r2) are given by Patel

and Teja.

Solution: For the amount of vapor to be a maximum, the highest pressure is P = p∗(230◦C)

= 2996 kPa. The amount is

m = nM =
p∗V M

zRT
(16)

All quantities in equation (16) are known except z(p∗, T ). Using the PLKT procedure

described above and the Maple script shown in Figure 2, we obtain the values

z = 0.6279, m = 13.71 kg

(For comparison, direct use of the Patel-Teja EOS(35,36) gives z = 0.6283, m = 13.70 kg.)
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CONCLUSIONS

1. We believe that it is important in teaching the PvT behavior of fluids to emphasize the

general basis for the Pitzer-Lee-Kesler-Teja (PLKT) strategy as an implementation of

the 3-parameter principle of corresponding states. This makes clear the underlying basis

for the Pitzer corresponding-states approach, and makes extensions more self-evident; we

have provided an example of possible extensions to the family of halogenated hydrocarbon

refrigerants and to the family of n-alkanols.

2. We believe that it is important pedagogically to emphasize the quantitative (analytical)

implementation of the PLKT strategy, rather than the use of tables and charts, although

the latter are useful qualitatively. This quantitative implementation is easily carried out

using meta-computing software.

3. We have shown an implementation for a three-parameter corresponding states predic-

tion of the compressibility factor to calculate z(P, T ) when the EOS is given in the form

z(v, T ) using meta-computing software. We have illustrated this with an example using

MAPLE(15); files for Mathematica(16), Mathcad(17), and MATLAB(18) may be obtained

from the web site at http://www.chemical-stoichiometry.net/PLKT/. Also contained on

this web site are four corresponding files for calculating z(P, T ) when the EOS is given in

the form z(v′
r, Tr).
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FIGURE CAPTIONS

Figure 1.

Compressibility factor, z(Pr, Tr), as a function of acentric factor, ω, for a family of refrig-

erants (filled circles), some members of the family of n-alkanols (open circles and triangles),

and the family of normal fluids (dotted lines). Where present, the full lines are linear fits to

the data points, and are shown for comparison only. For the refrigerants, z was calculated

using the NIST REFPROP software package(32); for the n-alkanols, at Tr = 1.00, experi-

mental critical data were used(33) for C1 to C20; at other temperatures, z was calculated

only for C1 to C5 using the Patel-Teja EOS(35,36) and values of parameters provided; for the

normal fluids, the dotted line is the original PLK strategy(3). The refrigerants on the graph

(in order of their ω values) are R13, R21, R22, R23, R125, R218, R134a, RC318, R236ea;

the corresponding order for the n-alkanols is C1, C6, C7, C11, (C5, C8, C9, C4, shown as

one point), C10, C13, C3, C2, C12, C14, C16, C17, C18, C20, C19, C15 at Tr = 1, and C1,

C5, C4, C3, C2 at other temperatures.

Figure 2. MAPLE(15) script for Example 2. This and scripts in Mathematica(16),

Mathcad(17), and MATLAB(18) may be obtained from the web site at

http://www.chemical-stoichiometry.net/PLKT/
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Figure 2

# PLKT strategy for z(Pr,Tr) using Patel-Teja EOS for n-alkanols

# Reference fluids are ethanol, n-pentanol

restart;R:=8.3145;

omega1:=0.637;Tc1:=516.25;Pc1:=6384000.;zeta1:=0.300;F1:=1.230395;

omega2:=0.594;Tc2:=586.15;Pc2:=3880000.;zeta2:=0.311;F2:=1.242855;

omega_b1:=fsolve(x^3+(2-3*zeta1)*x^2+3*zeta1^2*x-zeta1^3,x,0..10.);

omega_b2:=fsolve(x^3+(2-3*zeta2)*x^2+3*zeta2^2*x-zeta2^3,x,0..10.);

omega_a1:=3*zeta1^2+3*(1-2*zeta1)*omega_b1+omega_b1^2+1-3*zeta1;

omega_a2:=3*zeta2^2+3*(1-2*zeta2)*omega_b2+omega_b2^2+1-3*zeta2;

omega_c1:=1-3*zeta1;omega_c2:=1-3*zeta2;

alpha:=(F,Tr)->(1+F*(1-Tr^(0.5)))^2;

a1:=omega_a1*R^2*Tc1^2/Pc1;a2:=omega_a2*R^2*Tc2^2/Pc2;

b1:=omega_b1*R*Tc1/Pc1;b2:=omega_b2*R*Tc2/Pc2;

c1:=omega_c1*R*Tc1/Pc1;c2:=omega_c2*R*Tc2/Pc2;

zPT:=(v,T,a,b,c)->(R*T/(v-b)-a/(v*(v+b)+c*(v-b)))*v/R/T;

# Example 2 re n-propanol

omega:=0.628;Pc:=5170000.;Tc:=536.71;

T:=230.+273.15;P:=2996000.;Tr:=T/Tc;Pr:=P/Pc;

T1:=Tc1*Tr;P1:=Pc1*Pr;T2:=Tc2*Tr;P2:=Pc2*Pr;

if Tr>1 then

z1:=fsolve(xx=zPT(xx*R*T1/P1,T1,a1*alpha(F1,Tr),b1,c1),xx,0..10);

z2:=fsolve(xx=zPT(xx*R*T2/P2,T2,a2*alpha(F2,Tr),b2,c2),xx,0..10);

else

x:=5.;

while x-zPT(x*R*T1/P1,T1,a1*alpha(F1,Tr),b1,c1)> 0 do x:=x-0.01 end do;

z1:=fsolve(zz=zPT(zz*R*T1/P1,T1,a1*alpha(F1,Tr),b1,c1),zz,x..x+.01);

x:=5.;

while x-zPT(x*R*T2/P2,T2,a2*alpha(F2,Tr),b2,c2)> 0 do x:=x-0.01 end do;

z2:=fsolve(zz=zPT(zz*R*T2/P2,T2,a2*alpha(F2,Tr),b2,c2),zz,x..x+.01);

end if;

z:=z1+(omega-omega1)/(omega2-omega1)*(z2-z1);

m:=P*0.2*60.1/(z*R*T);


